On the Convergence of Inexact Proximal Point Algorithm on Hadamard Manifolds

نویسندگان

  • P. Ahmadi
  • H. Khatibzadeh
چکیده

In this paper we consider the proximal point algorithm to approximate a singularity of a multivalued monotone vector field on a Hadamard manifold. We study the convergence of the sequence generated by an inexact form of the algorithm. Our results extend the results of [3, 25] to Hadamard manifolds as well as the main result of [11] with more general assumptions on the control sequence. We also give some application to optimization.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inexact scalarization proximal methods for multiobjective quasiconvex minimization on Hadamard manifolds

In this paper we extend naturally the scalarization proximal point method to solve multiobjective unconstrained minimization problems, proposed by Apolinario et al.[1], from Euclidean spaces to Hadamard manifolds for locally Lipschitz and quasiconvex vector objective functions. Moreover, we present a convergence analysis, under some mild assumptions on the multiobjective function, for two inexa...

متن کامل

W-convergence of the proximal point algorithm in complete CAT(0) metric spaces

‎In this paper‎, ‎we generalize the proximal point algorithm to complete CAT(0) spaces and show‎ ‎that the sequence generated by the proximal point algorithm‎ $w$-converges to a zero of the maximal‎ ‎monotone operator‎. ‎Also‎, ‎we prove that if $f‎: ‎Xrightarrow‎ ‎]-infty‎, +‎infty]$ is a proper‎, ‎convex and lower semicontinuous‎ ‎function on the complete CAT(0) space $X$‎, ‎then the proximal...

متن کامل

On the convergence of solutions to a difference inclusion on Hadamard manifolds

‎The aim of this paper is to study the convergence of solutions of the‎ ‎following second order difference inclusion‎ ‎begin{equation*}begin{cases}exp^{-1}_{u_i}u_{i+1}+theta_i exp^{-1}_{u_i}u_{i-1} in c_iA(u_i),quad igeqslant 1\ u_0=xin M‎, ‎quad‎ ‎underset{igeqslant 0}{sup} d(u_i,x)

متن کامل

Global convergence of an inexact interior-point method for convex quadratic‎ ‎symmetric cone programming‎

‎In this paper‎, ‎we propose a feasible interior-point method for‎ ‎convex quadratic programming over symmetric cones‎. ‎The proposed algorithm relaxes the‎ ‎accuracy requirements in the solution of the Newton equation system‎, ‎by using an inexact Newton direction‎. ‎Furthermore‎, ‎we obtain an‎ ‎acceptable level of error in the inexact algorithm on convex‎ ‎quadratic symmetric cone programmin...

متن کامل

Local Convergence of the Proximal Point Method for a Special Class of Nonconvex Functions on Hadamard Manifolds

Local convergence analysis of the proximal point method for special class of nonconvex function on Hadamard manifold is presented in this paper. The well definedness of the sequence generated by the proximal point method is guaranteed. Moreover, is proved that each cluster point of this sequence satisfies the necessary optimality conditions and, under additional assumptions, its convergence for...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014